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Unsupervised Splitting Rules for Neural Tree Classifiers*

Michael P. Perrone and Nathan Intrator
Center for Neural Science

Brown University
Providence, RI 02912

E-mail: mpp@cns.brown.edu and nin@cns.brown.edu

June 6, 1992

Abstract

This paper presents two unsupervised neural network splitting rules for use with CART-like neural
tree algorithms in high dimensional data space. These splitting rules use an adaptive variance estimate
to avoid some possible local minima which arise in unsupervised methods. We explain whcn the unsu-
pervised splitting rules outperform supervised neural network splitting rules and when the unsupervised
splitting rules outperform the standard node impurity splitting rules of CART. Using these unsupervised
splitting rules leads to a nonparametric classifier for high dimensional space that extracts local features
in an optimized way.

1 Introduction

Due to the curse of dimensionality (Bellman, 1961) it is desirable to extract features from a high dimensional
data space before attempting a classification. This may be done in those cases where the important structure
is assumed to lie in a low dimensional s sbspace of the original data. A general method for feature extraction
is Projection Pursuit, and its unsupervised version - Exploratory Projection Pursuit (Friedman and Tukey,
1974; Friedman, 1987).

One of the advantages of EPP is the use of locally smooth objective functions in the search for interesting
features. Such functions are not related to the class labels, and have the potential of avoiding the curse of
dimensionality (Huber, 1985). The method has an underlying assumption of homogeneity of the input space.
Intuitively this means that a useful feature can only be found based on all of the input patterns. This poses
a disadvantage due to the fact that the labels are not used through the search for good projections, and
therefore, it is possible to ignore features that may only be important for classifying a small portion of the
input data but are less interesting when considering the data as a whole. This observation is one of the
motivations of recursive partitioning methods, including tree structured algorithms.

2 CART-based Neural Trees

CART addresses high dimensional space problems by partitioning the space and replacing complex classifiers
(or regressors) designed for the whole input space, by a set of simpler modules working on smaller subregions
of the space. There have been some recent attempts for recursive partitioning classification [see for example
(Jacobs et al., 1991; Sankar and Mammone, 1991; Intrator, 1991; Perrone, 1991)].

CART is not directly applicable to classification problems in very high dimensional spaces, such as gray
level pixel images, since splitting based on a single dimension (single pixel in this case) is unlikely to increase

*This work was supported in part by the National Science Foundation, the Office of Naval Research, and the Army Research
Office.
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the homogeneity of sub regions in the space. At each node of the tree, additional features are sought before
the split is constructed, using only that portion of the input space that arrives to this node, and these new
features are added to the features extracted so far, to construct an optimal split at that node. This leads
to a combination of feature extraction and recursive partitioning that has the potential to be much more
powerful than each of the methods by itself. Moreover, this method is still consistent with the monotonicity
requirement of the cost at each split (Breiman et al., 1984), and therefore allows the use of the powerful
pruning mechanism of CART.

Thus, by combining these techniques, one can develop a hybrid neural tree algorithm. The construction
of the hybrid tree then proceeds the same as in the CART method (Breiman et al., 1984) with the exception
that every node can perform additional feature extraction based on the high dimensional input patterns
that arrive at that node, and based on the features extracted so far. The construction of a rested sequence
of trees, the pruning based on cost, complexity cross-validation and the final tree selection can all be done
exactly in the same way as in CART.

3 Comparison with CART Splitting Rules

It is important to see that the splitting rules presented in this paper have the desired feature extracting
behavior. To see this behavior, we compare them to some splitting rules commonly used with CART
(Breiman et al., 1984). Let p(ilt) be the probability of class i at a tree node t and let pL and PR be the
percentages of the data set on the 'left' and 'right' sides of a given partition. Some of the common CART
splitting rules can be written in terms of these quantities as follows.

IEntr,py(t) = - • P•p(ijt , )lnp(ijt,),

IG . (t) E P. E, A-•plt')Wilt,),
s=L,R iLj

ITolng(t) = PLPR [E ýp(jhtL) - p(jttR)]J2 , Acceslon For
NTIS CRA&I
DTIC TAB

ID,(t) = 2PLP [Z lp(JftL) - p(jlt.R)l]. Unannounced lii
Justification

The optimal split is then found by minimizing one of these measures.

By ._....................... ...................
Distribution I

Availability Codes

Avail and I'or
Dist Special

Figure 1: Randomly generated gaussian clusters. Each cluster corresponds to one class

For the double gaussian distribution shown in figure 1, the CART measures are shown in figure 2. In this
example, each cluster represents a different class. It is easy to see that these measures find the best split. In
figure 5, the unsupervised splitting rules are shown for the same double gaussian distribution. It should be
noted that the structure found by the CART measures depend completely on the label; whereas the neural
splitting costs don't have this restriction.
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Figure 2: From left to right: the Gini, Entropy, Twoing and Delta measures. These measures correspond
only to splits which pass through the center of the data shown in figure 1. The rotation angle of the split is
plotted on the x-axis from 0 to 27r. Each measure is minimized at 1 and 1"

4 4

4 Supervised vs Unsupervised Features

An example where this splitting rule along with feature extraction may be useful is given in figure 3. It
shows a sihregion in space in which Lwu classes are strongiy mixed. A supervised splitting algorithm will
split according to hyperplane 1 whereas the above unsupervised splitting rule will prefer to split according
to hyperplane 2. This is because split 1 increases the purity of each node more than split 2 although split 1
does not focus on the confusion region between class A and B. It is conceivable that if the confused region is
transferred in full to a node, and then an attempt to extract more informative features only from this region
is made, the new representation will have a better chance to reduce the confusion between the classes in this
subregion.

.1

f

Figure 3: The ability of an unsupervised Figure 4: The minimization of the pseu-
do-supervised MSE, is equivalent to min-

splitting rule to reduce confusion. imizing the shaded area in the picture.

5 Generalized Pseudo-Supervised Splitting Rule

In (Intrator, 1991), a pseudo-supervised variant of backpropagation was presented for finding optimal splits
for a neural tree classifier. A related unsupervised technique is presented in (Bridle and Cox, 1991). In
this section, we extend Intrator's results to a more robust splitting rule. For simplicity, we shall follow the
notations presented in (Rumelhart et al., 1986).

Let opi be the output of the j'th splitting rule function for input pattern p. f; is a sigmoidal activation
function defined by f,(t) = [1 + exp(-t)]-, so that opj = f,(net,,,), where net,, = -- L, w,,ot and F'=

varp (Zi wjopi). Let the target for output j be also defined in terms of the network activity, t, = f. (netp,
where fi is a sigmoidal function with a gain constant A > I, f,(t) = [1 +exp(-At)]- . The network is trained
to minimize the empirical MSE EP(tp - o,)'. In order to avoid trivial splits it is possible to add penalty of
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the form

r,~i (Zop)(IY))l11,1 n

P P
for some small constant r, however, simulations show that the trivial split does not usually happen especially
when there are several neurons in the hidden and output layer.

The difference between thi and op, is shown in figure 4. This target function approximates a characteristic
function, an approximation which will improve when A -- oo. In practice, there is no need to have A be
greater than 5. The calculation of the gradient with respect to the weight wi, follows in the same way as in
(Rumelhart et al., 1986), when taking into account the fact that the target depends on the network output
as well. For an output layer unit j we have

aE p [I' E p -lop, , rqEp a lp, .Inel.,
49wii t9oPj anet., at., anet~p, awli

and it follows that for 1
61,i a-(tPj - opj) [op, (1 - op,))..Atpj (I tp,)],

we get
aEP -6Pj Opt

aEi,Ow1

The calculation of the gradient with respect to a hidden unit weight is exactly as in (Rumelhart et al., 1986),
and will not be repeated here.

An intuitive explanation to this target definition is similar to the reasoning behind hard and soft compe-
tition approaches (Hinton and Nowlan, 1990). If a hard target (0 or 1) is imposed, then whenever the output
is close to .5 which means that the input is close to the boundary, the error signal would be large. However
if the input is close to the boundary, it is likely to be on the wrong side of the boundary, which will then
lead to a large wrong correction signal. Using the soft target which takes into account the confidence in the
output solves this problem, since the target is also close to 0.5. Another explanation is obtained by observing
that the target is also dependent on the synaptic weights, and therefore the gradient of the synaptic weights
with respect to the output should be taken into account as well. This requires the use of a soft target.

The construction of a binary splitting rule based on the above criterion is done by letting the PS network
converge (or stop training based on another criterion) and then assign the patterns for which the output of
the network is greater than .5 to tR. In the case of a multi-split, assign to set j the patterns for which the
output of unit j in the network is greater than .5.

6 Gaussian Splitting Rule

In this section we present a variation of the splitting rule described above. For this splitting rule, we
define a splitting cost by replacing the sigmoidal activation functions, opi = fj (netpi ) of the final layer of
a backprop network with gaussians, opj = g3(netp,) where gj(t) = ezp(-t 2 /2au 2 ), netp, Es wi op. and

-li var,(netpi). In the case, the splitting cost, E, is defined as

E aopi,.

PJ

So the delta rule for a pattern p is given by

OE,_ aEp app, anet,,
8Ojw Oo,,, Ontj Owj,

and it follows that for

1
4p •a-- p e~



we get

Again we have that the hidden unit gradients follow exactly as in (Rumelhart et al., 1986) and can be
implemented with a minor modification to a backpropagation algorithm.

For the splitting rule ou,'lined above, the cost, E, is minimized by pushing the data points to either

side of the central gaussian. It is in this way that the splitting rule extracts clusters from high dimensional
spaces. As in the previous section, we can add the same penalty to avoid trivial splits.

' i

Figure 5: Pseudo-supervised and unsupervised splitting measures. These measures correspond only to splits
which pass through the center of the data shown in figure 1. The rotation angle of the split is plotted on
the x-axis from 0 to 27r. Each measure is minimized at !- and !-.

4 4.

Figure 7: Local minima for the pseudo-
Figure 6: The split orthogonal to the op- supervised and unsupervised gaussian
timal split is a local minimum because a splitting rules dominate the parameter
rotation in either direction will increase space with the exception of small squint
the cost. angles which have maintained global min-

ima.

7 Avoiding Local Minima

Unsupervised splitting methods suffer from spurious local minima that do not exist for supervised algorithms
(Figure 6). This problem is amplified dramatically in high dimensional spaces where the squint angle (i.e. the
solid angle on a unit hypersphere for which a projection reveals the clustering structure) becomes extremely
narrow. (See (Huber, 1985) for a detailed discussion of the statistical problems involved.) In these cases,
nearly every minima is a local minima.

However, the unsupervised splitting rules presented in this paper avoid this problem by using an empirical
variance to remove the local minima shown The unsupervised splitting rules without the variance modification
are shown in figure 7. Due to the narrow squint angle, the local minima occupy most of the parameter space.
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8 Discussion

A method of recursive partitioning for high dimensional input spaces was introd,.ced. This was done by
combining the benefits from exploratory projection pursuit with those from the CART' method, New ex-
ploratory splitting rules were presented, and argued to have the potential to be less biased to the training
data. The splitting rules, can have a boundary that contains an arbitrary predefined number of hyperplanes
by defining the number of hidden units in the feedforward network, and is easily extended into multiple
splits. In addition, the splitting rules avoid some of the local minima of other unsupervised splitting rules
and they are not plagues by the problems with exhaustive searches in high dimensional spaces.

Combining all the above ingredients together, results in a computationally practical method for non-
parametric classification in very high dimensional spaces, that is less sensitive to the curse of dimenzicnality
due to the feature extraction, and is less biased to the training data, due tu the sophisticated tree construction
of the CART method.
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